Categorical Homotopy Theory

نویسندگان

  • J. F. JARDINE
  • Gunnar Carlsson
چکیده

This paper is an exposition of the ideas and methods of Cisinksi, in the context of A-presheaves on a small Grothendieck site, where A is an arbitrary test category in the sense of Grothendieck. The homotopy theory for the category of simplicial presheaves and each of its localizations can be modelled by A-presheaves in the sense that there is a corresponding model structure for A-presheaves with an equivalent homotopy category. The theory specializes, for example, to the homotopy theories of cubical sets and cubical presheaves, and gives a cubical model for motivic homotopy theory. The applications of Cisinski’s ideas are explained in some detail for cubical sets.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Homotopy approximation of modules

Deleanu, Frei, and Hilton have developed the notion of generalized Adams completion in a categorical context. In this paper, we have obtained the Postnikov-like approximation of a module, with the help of a suitable set of morphisms.

متن کامل

On Algebraic K-theory Categorical Groups

Homotopy categorical groups of any pointed space are defined via the fundamental groupoid of iterated loop spaces. This notion allows, paralleling the group case, to introduce the notion of K-categorical groups KiR of any ring R. We also show the existence of a fundamental categorical crossed module associated to any fibre homotopy sequence and then, K1R and K2R are characterized, respectively,...

متن کامل

Homotopy theory, and change of base for groupoids and multiple groupoids

This survey article shows how the notion of “change of base”, used in some applications to homotopy theory of the fundamental groupoid, has surprising higher dimensional analogues, through the use of certain higher homotopy groupoids with values in forms of multiple groupoids.

متن کامل

Homotopy Classification of Categorical Torsors

The long-known results of Schreier on group extensions are here raised to a categorical level by giving a factor set theory for torsors under a categorical group (G,⊗) over a small category B. We show a natural bijection between the set of equivalence classes of such torsors and [B(B),B(G,⊗)], the set of homotopy classes of continuous maps between the corresponding classifying spaces. These res...

متن کامل

Galois Theory and a New Homotopy Double Groupoid of a Map of Spaces

The authors have used generalised Galois Theory to construct a homotopy double groupoid of a surjective fibration of Kan simplicial sets. Here we apply this to construct a new homotopy double groupoid of a map of spaces, which includes constructions by others of a 2-groupoid, cat-group or crossed module. An advantage of our construction is that the double groupoid can give an algebraic model of...

متن کامل

A Coherent Homotopy Category of 2-track Commutative Cubes

We consider a category H ⊗ (the homotopy category of homotopy squares) whose objects are homotopy commutative squares of spaces and whose morphisms are cubical diagrams subject to a coherent homotopy relation. The main result characterises the isomorphisms of H ⊗ to be the cube morphisms whose forward arrows are homotopy equivalences. As a first application of the new category we give a direct ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009